Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 6, 2026
-
Free, publicly-accessible full text available September 8, 2026
-
Our RLibm project has recently proposed methods to generate a single implementation for an elementary function that produces correctly rounded results for multiple rounding modes and representations with up to 32-bits. They are appealing for developing fast reference libraries without double rounding issues. The key insight is to build polynomial approximations that produce the correctly rounded result for a representation with two additional bits when compared to the largest target representation and with the “non-standard” round-to-odd rounding mode, which makes double rounding the RLibm math library result to any smaller target representation innocuous. The resulting approximations generated by the RLibm approach are implemented with machine supported floating-point operations with the round-to-nearest rounding mode. When an application uses a rounding mode other than the round-to-nearest mode, the RLibm math library saves the application’s rounding mode, changes the system’s rounding mode to round-to-nearest, computes the correctly rounded result, and restores the application’s rounding mode. This frequent change of rounding modes has a performance cost. This paper proposes two new methods, which we call rounding-invariant outputs and rounding-invariant input bounds, to avoid the frequent changes to the rounding mode and the dependence on the round-to-nearest mode. First, our new rounding-invariant outputs method proposes using the round-to-zero rounding mode to implement RLibm’s polynomial approximations. We propose fast, error-free transformations to emulate a round-to-zero result from any standard rounding mode without changing the rounding mode. Second, our rounding-invariant input bounds method factors any rounding error due to different rounding modes using interval bounds in the RLibm pipeline. Both methods make a different set of trade-offs and improve the performance of resulting libraries by more than 2×more » « lessFree, publicly-accessible full text available June 18, 2026
-
We study the complexity of sampling, rounding, and integrating arbitrary logconcave functions given an evaluation oracle. Our new approach provides the first complexity improvements in nearly two decades for general logconcave functions for all three problems, and matches the best-known complexities for the special case of uniform distributions on convex bodies. For the sampling problem, our output guarantees are significantly stronger than previously known, and lead to a streamlined analysis of statistical estimation based on dependent random samples.more » « lessFree, publicly-accessible full text available June 9, 2026
-
Free, publicly-accessible full text available June 18, 2026
-
Heavy quarks, and the hadrons containing them, are excellent probes of the QCD medium formed in high-energy heavy-ion collisions, as they provide essential information on the transport properties of the medium and how quarks color-neutralize into hadrons. Large theoretical and phenomenological efforts have been dedicated thus far to assess the diffusion of charm and bottom quarks in the quark-gluon plasma and their subsequent hadronization into heavy-flavor (HF) hadrons. However, the fireball formed in heavy-ion collisions also features an extended hadronic phase, and therefore any quantitative analysis of experimental observables needs to account for the rescattering of charm and bottom hadrons. This is further reinforced by the presence of a QCD cross-over transition and the notion that the interaction strength is maximal in the vicinity of the pseudo-critical temperature. We review existing approaches for evaluating the interactions of open HF hadrons in a hadronic heat bath and the pertinent results for scattering amplitudes, spectral functions and transport coefficients. While most of the work to date has focused on 𝐷-mesons, we also discuss excited states as well as HF baryons and the bottom sector. Both the HF hadro-chemistry and bottom observables will play a key role in future experimental measurements. We also conduct a survey of transport calculations in heavy-ion collisions that have included effects of hadronic HF diffusion and assess its impact on various observables.more » « lessFree, publicly-accessible full text available May 19, 2026
-
We present a new random walk for uniformly sampling high-dimensional convex bodies. It achieves state-of-the-art runtime complexity with stronger guarantees on the output than previously known, namely in Rényi divergence (which implies TV, KL etc.). The proof departs from known approaches for polytime algorithms for the problem - we utilize a stochastic diffusion perspective to show contraction to the target distribution with the rate of convergence determined by functional isoperimetric constants of the stationary density.more » « less
-
This study explores and presents a comprehensive understanding of the synergistic effect of in situ formed TiO2 in Ti2C MXene (TTMXene) nanomaterials to derive enhanced energy characteristics in high-performance flexible symmetric supercapacitors. The TTMXene two-dimensional (2D) (nanocomposite) materials were synthesized by a simple single-step chemical etching method. The TTMXene thus formed exhibits a layered structure with an average particle size in the range of 10−50 nm. The electrochemical studies demonstrate that the TTMXene nanocomposite exhibits a specific capacitance of 729 F g−1 at a current density of 0.5 A g−1 . This enhanced performance is due to utilizationofa highactivesurfaceareaand excellentelectronicconductivityofthe in-situ formed TiO2 in Ti2C MXene. The prototype of a flexible symmetric TTMXene supercapacitor was fabricated and characterized. The TTMXene// TTMXenedemonstratedanexcellentenergydensityof152.3Whkg−1 atapower density of 0.215 kW kg−1 and retained 88% specific capacitance after 10,000 cycles. These findings highlight that the TTMXene nanocomposites are exceptional candidates for future flexible supercapacitor devices with long-term and superior performance.more » « lessFree, publicly-accessible full text available January 27, 2026
-
Free, publicly-accessible full text available May 1, 2026
An official website of the United States government

Full Text Available